ЕГЭ по математике (профиль) 11 класс 2023. Новый тренировочный вариант №33 — №220912 (задания и ответы)

ЕГЭ 2023. Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2023 год.

В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.

Скачать тренировочный вариант ЕГЭ: Скачать

Смотреть онлайн 

Интересные задания:

1. Через концы 𝐴 и 𝐵 дуги окружности с центром 𝑂 проведены касательные 𝐴𝐶 и 𝐵𝐶. Меньшая дуга 𝐴𝐵 равна 58°. Найдите угол 𝐴𝐶𝐵. Ответ дайте в градусах.
Ответ: 122

2. В прямоугольном параллелепипеде 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 известны длины рёбер: 𝐴𝐵 = 7, 𝐴𝐷 = 3, 𝐴𝐴1 = 4. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки 𝐴, 𝐵 и 𝐶1.
Ответ: 35

3. В соревнованиях по толканию ядра участвуют 4 спортсмена из Эстонии, 7 из Латвии, 7 из Литвы и 10 из Польши. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Литвы.
Ответ: 0,25

4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в первом автомате закончится кофе, равна 0,1. Вероятность того, что кофе закончится во втором автомате, такая же. Вероятность того, что кофе закончится в двух автоматах, равна 0,03. Найдите вероятность того, что к концу дня кофе останется в двух автоматах.
Ответ: 0,83

7. На рисунке изображён график функции 𝑦 = 𝑓 ′(𝑥) − производной функции 𝑓(𝑥), определённой на интервале (−3; 8). Найдите точку максимума функции 𝑓(𝑥).
Ответ: 7

8. Мотоциклист, движущийся по городу со скоростью 𝜈0 = 60 км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением 𝑎 = 18 км/ч 2 . Расстояние (в км) от мотоциклиста до города вычисляется по формуле 𝑆 = 𝜈0𝑡 + 𝑎𝑡 2 2 , где 𝑡 − время в часах, прошедшее после выезда из города. Определите время, прошедшее после выезда мотоциклиста из города, если известно, что за это время он удалился от города на 21 км. Ответ дайте в минутах.
Ответ: 20

9. В сосуд, содержащий 10 литров 24-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составит концентрация получившегося раствора?
Ответ: 16

10. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐, где числа 𝑎, 𝑏 и 𝑐 − целые. Найдите значение 𝑓(−12).
Ответ: 61

12. а) Решите уравнение 8 𝑥 − 9 ∙ 2 𝑥+1 + 2 5−𝑥 = 0. б) Найдите все корни этого уравнения, принадлежащие отрезку [log5 2 ; log5 20].

13. В прямоугольном параллелепипеде 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 известны длины рёбер: 𝐴𝐵 = 4, 𝐵𝐶 = 3, 𝐴𝐴1 = 2. Точки 𝑃 и 𝑄 − середины рёбер 𝐴1𝐵1 и 𝐶𝐶1 соответственно. Плоскость 𝐴𝑃𝑄 пересекает ребро 𝐵1𝐶1 в точке 𝑈. а) Докажите, что 𝐵1𝑈: 𝑈𝐶1 = 2: 1. б) Найдите площадь сечения параллелепипеда 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 плоскостью 𝐴𝑃𝑄.

14. Решите неравенство (log2 2𝑥 − 2 log2 𝑥) 2 < 11log2 2𝑥 − 22 log2 𝑥 − 24.

15. 15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия его возврата таковы: – 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; – 15-го числа 20-го месяца долг составит 100 тысяч рублей; – к 15-му числу 21-го месяца кредит должен быть полностью погашен. Найдите общую сумму выплат после полного погашения кредита.

17. Найдите все значения 𝑎, при каждом из которых уравнение 2 𝑥 − 𝑎 = √4 𝑥 − 𝑎 имеет единственный корень.

18. В школьном живом уголке 4 ученика кормят кроликов. Каждый ученик насыпает нескольким кроликам (хотя бы одному, но не всем) порцию корма. При этом первый ученик даёт порции по 100 г, второй – по 200 г, третий – по 300 г, четвёртый – по 400 г, а какие-то кролики могут остаться без корма. а) Может ли оказаться, что кроликов было 15 и все они получили одинаковое количество корма? б) Может ли оказаться, что кроликов было 15 и все кролики получили разное количество корма? в) Какое наибольшее количество кроликов могло быть в живом уголке, если известно, что каждый ученик засыпал корм ровно четырём кроликам и все кролики получили разное количество корма?

Решения и критерии оценивания выполнения заданий с развёрнутым ответом
Количество баллов, выставленных за выполнение заданий 12–18, зависит от полноты решения и правильности ответа. Общие требования к выполнению заданий с развёрнутым ответом: решение должно быть математически грамотным, полным, все возможные случаи должны быть рассмотрены. Методы решения, формы его записи и формы записи ответа могут быть разными.

За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов.

Эксперты проверяют только математическое содержание представленного решения, а особенности записи не учитывают. При выполнении задания могут использоваться без доказательства и ссылок любые математические факты, содержащиеся в учебниках и учебных пособиях, входящих в Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ среднего общего образования.

Вы можете создать экзаменационный типовой вариант ВПР, ЕГЭ и ОГЭ на нашем сайте