Экзаменационная работа включает в себя 21 задание . На выполнение работы отводится 3 часа (180 минут). Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Сначала запишите ответы к заданиям в поле ответа в тексте работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки . При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.
Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Смотреть онлайн
Интересные задания:
1. Угол между биссектрисой и медианой прямоугольного треугольника, проведёнными из вершины прямого угла, равен 14°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.
3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы – прямые).
4. В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?
5. В коробке 12 синих, 6 красных и 7 зелёных фломастеров. Случайным образом выбирают два фломастера. Найдите вероятность того, что окажутся выбраны один синий и один красный фломастеры.
6. Найдите корень уравнения √2𝑥 + 31 = 9.
7. Найдите значение выражения log2 7 ∙ log7 4.
8. На рисунке изображён график функции 𝑦 = 𝑓 ′ (𝑥) − производной функции 𝑓(𝑥), определённой на интервале (−3; 8). Найдите точку минимума функции 𝑓(𝑥).
9. Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому мощность излучения 𝑃 (в ваттах) нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: 𝑃 = 𝜎𝑆𝑇 4 , где 𝜎 = 5,7 ∙ 10−8 − постоянная, площадь поверхности 𝑆 измеряется в квадратных метрах, а температура 𝑇 − в градусах Кельвина. Известно, что некоторая звезда имеет площадь поверхности 𝑆 = 1 18 ∙ 1021 м 2 , а излучаемая ею мощность 𝑃 равна 4,104 ∙ 1027 Вт. Определите температуру этой звезды. Дайте ответ в градусах Кельвина.
10. Расстояние между городами A и B равно 630 км. Из города A в город B выехал первый автомобиль, а через три часа после этого навстречу ему из города B выехал со скоростью 70 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.
11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎 𝑥 . Найдите значение 𝑓(−3).
12. Найдите наибольшее значение функции 𝑦 = (𝑥 − 27) ∙ 𝑒 28−𝑥 на отрезке [23; 40].
14. В правильной треугольной призме 𝐴𝐵𝐶𝐴1𝐵1𝐶1 все рёбра равны 2. Точка 𝑀 − середина ребра 𝐴𝐴1 . а) Докажите, что прямые 𝑀𝐵 и 𝐵1𝐶 перпендикулярны. б) Найдите расстояние между прямыми 𝑀𝐵 и 𝐵1𝐶.
16. Вклад планируется открыть на четыре года. Первоначальный вклад составляет целое число миллионов рублей. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на 10 млн рублей. Найдите наибольший размер первоначального вклада, при котором банк через четыре года начислит на вклад меньше 15 млн рублей.
Вы можете создать экзаменационный типовой вариант ВПР, ЕГЭ и ОГЭ на нашем сайте