Тренировочный вариант №10 ЕГЭ по профильной математике 2025 (задания и ответы)

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развернутым ответом повышенного и высокого уровней сложности. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти

Смотреть онлайн

Интересные задания:

1. Через концы 𝐴 и 𝐵 дуги окружности с центром 𝑂 проведены касательные 𝐴𝐶 и 𝐵𝐶. Меньшая дуга 𝐴𝐵 равна 58°. Найдите угол 𝐴𝐶𝐵. Ответ дайте в градусах.

2. Длины векторов 𝑎⃗ и 𝑏⃗⃗ равны 3 и 7, а угол между ними равен 60°. Найдите скалярное произведение 𝑎⃗ ∙ 𝑏⃗⃗.

3. Шар вписан в цилиндр. Площадь поверхности шара равна 48. Найдите площадь полной поверхности цилиндра.

4. Фабрика выпускает сумки. В среднем 19 сумок из 160 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов. Результат округлите до сотых.

5. В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

6. Найдите корень уравнения lg(4 − 𝑥) = 2.

7. Найдите значение выражения 30 tg 3° ∙ tg 87° − 43.

8.На рисунке изображён график функции 𝑦 = 𝑓(𝑥), определённой на интервале (−7; 7). Определите количество целых точек, в которых производная функции положительна.

10. Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона?

11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑘𝑥 + 𝑏. Найдите значение 𝑓(7).

12. Найдите наименьшее значение функции 𝑦 = (𝑥 − 9) 2 (𝑥 + 4) − 4 на отрезке [7; 16].

13. а) Решите уравнение log4(2 2𝑥 − √3 cos 𝑥 − 6sin2𝑥) = 𝑥. б) Укажите корни этого уравнения, принадлежащие отрезку.

14. Точка 𝐸 лежит на высоте 𝑆𝑂, а точка 𝐹 − на боковом ребре 𝑆𝐶 правильной четырёхугольной пирамиды 𝑆𝐴𝐵𝐶𝐷, причём 𝑆𝐸: 𝐸𝑂 = 𝑆𝐹: 𝐹𝐶 = 2: 1. а) Докажите, что плоскость 𝐵𝐸𝐹 пересекает ребро 𝑆𝐷 в его середине. б) Найдите площадь сечения пирамиды плоскостью 𝐵𝐸𝐹, если 𝐴𝐵 = 8, 𝑆𝑂 = 14.

16. В июле 2025 года планируется взять кредит на десять лет в размере 1400 тыс. рублей. Условия его возврата таковы: – каждый январь долг будет возрастать на 10% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо оплатить одним платежом часть долга; – в июле 2026, 2027, 2028, 2029 и 2030 годов долг должен быть на какую-то одну и ту же величину меньше долга на июль предыдущего года; – в июле 2031, 2032, 2033, 2034 и 2035 годов долг должен быть на другую одну и ту же величину меньше долга на июль предыдущего года; – к июлю 2035 года долг должен быть выплачен полностью. Известно, что сумма всех платежей после полного погашения кредита будет равна 2120 тыс. рублей. Сколько рублей составит платёж в 2026 году?

17. Высоты тупоугольного треугольника 𝐴𝐵𝐶 с тупым углом 𝐴𝐵𝐶 пересекаются в точке 𝐻. Угол 𝐴𝐻𝐶 равен 60°. а) Докажите, что угол 𝐴𝐵𝐶 равен 120°. б) Найдите 𝐵𝐻, если 𝐴𝐵 = 6, 𝐵𝐶 = 10.

19. Даны 𝑛 различных натуральных чисел, составляющих арифметическую прогрессию (𝑛 ≥ 3). а) Может ли сумма всех данных чисел быть равной 10? б) Каково наибольшее значение 𝑛, если сумма всех данных чисел меньше 1000? в) Найдите все возможные значения 𝑛, если сумма всех данных чисел равна 129.

Вы можете создать экзаменационный типовой вариант ВПР, ЕГЭ и ОГЭ на нашем сайте