Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развернутым ответом повышенного и высокого уровней сложности. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Скачать тренировочный вариант ЕГЭ: Скачать
Скачать решение всех заданий: Скачать
Или создайте свой оригинальный вариант: Перейти
Смотреть онлайн
Интересные задания:
1. Площадь параллелограмма 𝐴𝐵𝐶𝐷 равна 155. Точка 𝐸 — середина стороны 𝐶𝐷. Найдите площадь треугольника 𝐴𝐷𝐸.
2. Даны векторы 𝑎⃗ (14; −2) и 𝑏⃗⃗ (5; −8). Найдите скалярное произведение 𝑎⃗ ∙ 𝑏⃗⃗.
3. В куб с ребром 3 вписан шар. Найдите объём этого шара, делённый на 𝜋
4. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 5 или 6.
5. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,5 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не меньше 0,8?
8. На рисунке изображён график функции 𝑦 = 𝑓(𝑥). На оси абсцисс отмечены точки −2, −1, 3, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
10. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 375 литров она заполняет на 10 минут быстрее, чем первая труба заполняет резервуар объемом 500 литров?
11. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎 𝑥 . Найдите значение 𝑓(−3).
12. Найдите наибольшее значение функции 𝑦 = ln(𝑥 + 6) 3 − 3𝑥 на отрезке [−5,5; 0].
14. Сечением прямоугольного параллелепипеда 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 плоскостью 𝛼, содержащей прямую 𝐵𝐷1 и параллельной прямой 𝐴𝐶, является ромб. а) Докажите, что грань 𝐴𝐵𝐶𝐷 − квадрат. б) Найдите угол между плоскостями 𝛼 и 𝐵𝐶𝐶1 , если 𝐴𝐴1 = 6, 𝐴𝐵 = 4.
16. Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего года и четвёртого годов вклад ежегодно пополняется на одну и ту же фиксированную сумму, равную целому числу миллионов рублей. Найдите наименьший возможный размер такой суммы, при котором через четыре года вклад станет не меньше 30 млн рублей.
17. Высоты 𝐵𝐵1 и 𝐶𝐶1 остроугольного треугольника 𝐴𝐵𝐶 пересекаются в точке 𝐻. а) Докажите, что ∠𝐵𝐵1𝐶1 = ∠𝐵𝐴𝐻. б) Найдите расстояние от центра окружности, описанной около треугольника 𝐴𝐵𝐶, до стороны 𝐵𝐶, если 𝐵1𝐶1 = 9√3 и ∠𝐵𝐴𝐶 = 30°.
19. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные произведения (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число 𝑛, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число 𝑛, а остальные числа, равные 𝑛, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 9, 12, 36. а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150. б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 2, 5, 10, 11, 22, 25, 55, 110, 275, 550? в) Приведите все примеры пяти задуманных чисел, для которых на доске будет записан набор, наибольшее число в котором равно 91.
Вы можете создать экзаменационный типовой вариант ВПР, ЕГЭ и ОГЭ на нашем сайте